Energy metabolism in disorders of the nervous system

"Energy metabolism" is deranged in a wide variety of disorders of the nervous system. This term refers rather loosely to the pathways responsible for the utilization of the major substrates of brain.

Primary disorders of energy metabolism are those in which the primary insult affects the cellular machinery required for energy metabolism. A typical example would be a defect in a gene coding for a mitochondrial protein. Biochemically, defects which appear to be hereditary and which lead to disease of the central nervous system have been described in each of the pathways of energy metabolism: glycogenolysis (the break-down of glycogen to glucose); glycolysis (the break down of glucose to pyruvate and lactate); the pyruvate dehydrogenase complex (which oxidizes pyruvate to enter the Krebs tricarboxylic acid cycle); the tricarboxylic acid cycle itself (which completes the oxidation of carbohydrates and other substrates to carbon dioxide); electron transport (which carries out their oxidation to water); the pentose phosphate pathway (an alternate pathway for glucose oxidation); and several "minor" mitochondrial pathways. Clinically, the spectrum of syndromes associated with primary disorders of energy metabolism is wide. Common manifestations include psychomotor retardation, with associated lactic acidosis and/or hypoglycemia. The laboratory abnormalities may be intermittent. Syndromes which have been culled out include congenital lactic acidosis, Leigh disease, intermittent ataxia, Kearns-Sayre-Shy syndrome (KSS), myoclonus epilepsy with ragged red fibers (MERRF), and mitochondrial myopathy-encephalopathy-lactic acidosis-stroke (MELAS). As with other families of inborn errors, both clinical and biochemical heterogeneity occur. Patients with apparently similar clinical syndromes can turn out to have different inborn errors, and patients with abnormalities of the same gene product can have clinically distinguishable syndromes. Secondary disorders are those in which the derangements of energy metabolism are presumably secondary to some other insult but may still be important for the cellular pathophysiology. These include the metabolic encephalopathies and probably a number of well-known neurodegenerative disorders. In the hereditary ataxias, abnormalities of mitochondrial markers are common but do not correlate consistently with the disorders as conventionally classified; a new classification into axonal ataxias, multiple system degenerations, and ataxic encephalopathies may be easier to relate to the pathophysiology.

Source

Photo: https://www.syl.ru

Similar articles:

Metabolic Disorders

Metabolism is the process your body uses to get or ...

Inherited Metabolic Disorders

Inherited metabolic disorders are genetic conditions that result in metabolism ...

Energy Metabolism – the Overview

Basic terms of the energy metabolism Metabolism (from Greek metabolē ...

Energy Metabolism and Ageing in the Mouse: A Mini-Review

The mouse has rapidly become the mammalian model organism of ...

CNS Regulation of Energy Metabolism: Ghrelin versus Leptin

In this brief review, we introduce some major themes in ...

COOKIE

Our site collects information using cookies to be more convenient and customized to your needs interests. The purposes of the use of cookies are defined in Policy the processing of personal data .If you agree to continue to receive cookies, please click the "Accept" button. If you don't agree or want to resolve this issue later, please change your browser cookie settings.